
1

Introduction to TMMi and
Testing Basics

2

Topics

9:30AM-12:30AM

Test Process Improvement

Overview of The TMMi

Break

Process areas of the TMMi
model

2:00PM – 5:00PM

Testing Documentation

Testing Strategy & Testing Plan

Break

Testing Case Optimization

Measurement and Defect

Government Initiative

3

1 Test Process Improvement

4

Software Testing

� Process of searching for software errors

� How and when do we start?

5

Software Testing

� Testing is often considered as an expensive
and uncontrollable process.

� Testing takes too much time, costs a lot more
than planned, and offers insufficient
conception of the quality of the test process.

� Therefore, the quality of the information
system and the risks for the business can be
difficult to determine

6

1 void zunebug(int days) {

2 int year = 1980;

3 while (days > 365) {

4 if (isLeapYear(year)){

5 if (days > 366) {

6 days -= 366;

7 year += 1;

8 }

9 else {

10 }

11 }

12 else {

13 days -= 365;

14 year += 1;

15 }

16 }

17 printf("current year is %d\n", year);

18 }

The Defective Code (Fault)

7

1 void zunebug(int days) {

2 int year = 1980;

3 while (days > 365) {

4 if (isLeapYear(year)){

5 if (days > 366) {

6 days -= 366; // delete this

7 year += 1;

8 }

9 else {

10 }

11 days -=366; // insert this

11 } else {

13 days -= 365;

14 year += 1;

15 }

16 }

17 printf("current year is %d\n", year);

18 }

The Correction

A small fault!

8

Errors, Faults, Failures

Error: a mistake in the design or
programming; made by a human

Fault: a mistake in the code; the result of an
error

Failure: the occurrence of a software fault

Users don’t observe errors or

faults. They observe execution

failures.

H. Mills

9

How to prevent failure?

• Don’t make mistake

• Ask someone do checking for us

• Use more tools (automation)

10

Bomb Making and Process
Improvement

Two worst issues we do not want to see:
It should blast but it doesn’t.
It blasts but it shouldn’t.

11

Quality

� Quality means “conformance to requirements”

� The best testers can only catch defects that are
contrary to specification.

� Testing does not make the software perfect.

� If an organization does not have good requirements
engineering practices then it will be very hard to
deliver software that fills the users’ needs, because the
product team does not really know what those needs
are.

Testing Efforts and Coding Efforts

12

Testing decoupled

13

14

• Reduce overhead

• Increase efficiency & effectiveness

• Allow test to embrace change (key to agile

testing) Focus is on delivering results

• Improve Test’s influence in order to deliver better

quality

Why Invest in Process Improvement?

15

• There are many models that a test

process improvement effort can

follow:

• TPI®

• TMMi

• etc

Avalable Model ?

16

2 Overview of The TMMi

17

TMMi

� Introduced in 2007

� TMMi is based on TMM (partially published in

1996)

� New CMMI replacing the old SW-CMM

� Need for independent test maturity assessment

� Need for standard certification

� Focus on testing and integration with CMMI

� Practical experiences have shown that TMMi can
also be applied success fully in organizations
which are not at all familiar with CMMI.

TMMi Company Adoption

� Analyzing the assessment data, a significantly higher maturity
score was observed on especially the managerial TMMi

� A significantly higher maturity score was observed on especially
the managerial TMMi process areas for organizations that are
also using CMMI (in blue) compared with those that are not
also using CMMI (in red)

18

19

� A non-profit making organization

� non-commercial test improvement model

� Dedicated to improving test processes

and practice.

� Focus: development of a common, robust

model of test process assessment and

improvement in IT organizations

� As of May 2012, 800 members

representing 330 unique companies and

55 unique countries

TMMi Foundation

20

TMMi Foundation

� A standard staged TMMI model that can be used in
isolation or in support of other Software Process
Improvement models

� An independently managed data repository to support
TMMI assessment method accreditation, assessor and
assessment certification/validation and validated
assessment data and certificates

� Certification and training/examination process, procedures
and standards for formal, public accreditation of assessors
and lead assessors and the on-going management.

21

TMMi Levels

22

5

4

3

2

1 A B D

Level Key areas

Stage model

5

4

3

2 C D E

1 A B

Level Key areas

Continuous model

Models

Note: It is ground floor in GB and first floor in the US.

23

Some Statistics

• According to a study done by Experimentus of UK

• Survey 100 companies

• 72.5% were at TMMi level 1 (they are working in

a chaotic, hero-based way but starting to build

project based processes)

• 27.5% were at TMMi level 2 (they have some

established project based process and are

moving towards implementing process at an

organizational level)

• More than 70% of respondents do not have

metrics in place to monitor or manage testing goals.

24

3 Process areas of the TMMi model

25

Components within each Maturity
Level

26

Level 1 Organization

� Testing is a chaotic and is often considered a part

of debugging.

� The organization usually does not provide a stable

environment to support testing.

� Success in these organizations depends on the

competence and heroics of the people in the

organization.

� Tests are developed in an ad-hoc way after coding

is completed.

� The objective of testing is to show that the software

runs without major failures.

27

Level 1 Organization

� The delivered product often does not fulfill its needs, is

not stable, or is too slow to work with.

� Within testing there is a lack of resources, tools and

well-educated staff.

� Organizations are characterized by a tendency to over

commit, abandonment of processes in a time of crises,

and an inability to repeat their successes.

� Products tend not to be released on time, budgets are

overrun and quality is not according to expectations.

� No defined process areas.

28

Level 2 Organization

• Testing becomes a managed process and is clearly

separated from debugging.

• Testing is still perceived as being a project phase that

follows coding.

• A company-wide or programme-wide test strategy is

established.

• Test plans are also being developed. The test plan

defines test approach and what testing is required,

when, how and by whom.

• Risk management techniques are used to identify the

product risks based on documented requirements.

• Testing is monitored and controlled to ensure it is

going according to plan.

29

Level 2 Organization

• The status of the work products and the delivery of

testing services are visible to management.

• Testing may still start relatively late in the development

life cycle, e.g. during design or during the coding phase.

• Testing is multileveled: there are unit, integration, system

and acceptance test levels.

• The main objective of testing is to verify that the product

satisfies the specified requirements.

• Many quality problems occur because testing occurs late

in the development life cycle. Defects are propagated

from the requirements and design into code.

• No formal review programs.

30

Visibility

31

Generic Goal of Level 2

GG 2 Institutionalize a Managed Process

• GP 2.1 Establish an organizational policy

• GP 2.2 Plan the process

• GP 2.3 Provide resources

• GP 2.4 Assign responsibilities

• GP 2.5 Train people

• GP 2.6 Manage configurations

• GP 2.7 Identify and involve relevant stakeholders

• GP 2.8 Monitor and control the process

• GP 2.9 Objectively evaluate adherence

• GP 2.10 Review status with higher level management

32

Level 3 Organization

• Testing is fully integrated into the development life cycle.

• Test planning is done at an early project stage, e.g.

during the requirements phase.

• The organization’s set of standard processes is

established and improved over time.

• A test organization and a specific test training program

exist, and testing is perceived as a profession.

• Test cases are gathered, stored and managed in a

central database for re-use and regression testing.

• Basic tools support key testing activities.

• A formal review program is implemented. Reviews take

place across the life cycle.

33

Level 3 Organization

• Now do non-functional testing, e.g. on usability

and/or reliability.

• Testing processes are tailored from the

organization’s set of standard processes to suit a

particular project or organization unit and therefore

are more consistent except for the differences

allowed by the tailoring guidelines.

34

Generic Goal of Level 3

GG 2 Institutionalize a Defined Process

• GP 3.1 Establish a defined process

• GP 3.2 Collect improvement information

35

Organization, Training, Integration

• Establish a software test

organization

• Well trained and dedicated

group in charge of test process

• Oversees test planning, test

execution & recording, defect

tracking, test database, test

reuse, test tracking &

evaluation

• Establish a technical training

program

• Staff trained in test planning,

methods, standards and tools

• Staff prepared for review

process and user participation

• Integrate testing into the

software life cycle

• Testing activities are carried

out in all phases of life cycle

• Test planning initiated early,

user input solicited

35

36

Level 4 Organization

• Testing is a thoroughly defined, well-founded and

measurable process.

• The organization and projects establish quantitative

objectives for product quality and process performance

and use them as criteria in managing them.

• Product quality and process performance is understood

in statistical terms and is managed throughout the life

cycle.

• Measures are incorporated into the organization’s

measurement repository to support fact-based decision

making.

37

Level 4 Organization

• Reviews and inspections are considered to be part of

testing and used to measure document quality.

• The static and dynamic testing approach are integrated into

one.

• Reviews are formally used as means to control quality

gates.

• Products are evaluated using quantitative criteria for quality

attributes such as reliability, usability and maintainability.

• An organization wide test measurement program provides

information and visibility regarding the test process.

• Testing is perceived as evaluation; it consists of all life cycle

activities concerned with checking products and related

work products.

38

Level 5 Organization

• Testing is now a completely defined process and one

is capable of controlling the costs and the testing

effectiveness.

• Organization continually improves its processes based

on a quantitative understanding of the common cause

of variation inherent in processes.

• Improving test process performance is carried out

through incremental and innovative process and

technological improvements.

• The methods and techniques are optimized and there

is a continuous focus on fine-tuning and test process

improvement.

39

Level 5 Organization

• Defect prevention and quality control are practiced.

• Statistical sampling, measurements of confidence levels,

trustworthiness, and reliability drive the test process. The

test process is characterized by sampling based quality

measurements.

• A detailed procedure exists for selecting and evaluating test

tools. Tools support the test process as much as possible

during test design, test execution, regression testing, test

case management, etc.

• Process reuse is also practiced by a process asset library.

• Testing is a process with the objective to prevent defects.

40

TMMi Summary

� Testing is a chaotic process - ill defined and not
distinguished from debugging.

� Tests are developed ad hoc after coding is complete.

� Objective of testing is to show that the system and
software works.

� Lacks a trained professional testing staff and testing tools.

� Testing as a separate function from debugging.

� Testing becomes a defined phase following coding.

� Primary goal is to show that the system and software
meets specifications.

� The process is standardized to the point where basic
testing techniques and methods are in place.

Level 2

Level 1

41

TMMi Summary

� Testing is integrated into the entire life cycle.

� Test objectives are now based on the system requirements.

� A formal testing organization exists.

� Formal testing technical training, controls and monitors the testing
process, and begins to consider using automated test tools.

� Management recognizes testing as professional activity.

Level 3

� Testing is a measured & quantified process.

� Products are also tested for quality attributes such as reliability,
usability, and maintainability.

� Test cases are collected and recorded in a database for reuse and
regression testing.

� Defects are logged, given a severity level, and a priority for correction.

Level 4

42

TMMi Summary

� Testing is well defined and managed

� Testing costs and effectiveness are monitored.

� Automated tools are a primary part of the testing process

� There is an established procedure for selecting and evaluating
testing tools.

Level 5

Exercise (10 mins)

� You are outsourcing hotel booking web and
mobile app test tasks to a third party
solution.

� There are three potential software
outsourcing companies

� Can you provide five solid points how you
would you like to evaluate the capabilities
of three candidates.

43

44

4 Testing Document

45

Testing Documentation

� PRD (Product Requirement Document)

� FS (Functional Specification)

� UI Spec (User Interface Specification)

� Test Plan

� Test Case

� Test Suite

� Traceability matrix

� Risk Analysis

46

� What: Set of software requirements

� Who: Product Marketing, Sales, Technical Support

� When: Planning stage

� Why: We need to know what the product is
supposed to do

� QA role:

� Participate in reviews

� Analyze for completeness

� Spot ambiguities

� Highlight contradictions

� Provide feedback on features/usability

PRD (Product Requirement Document)

47

� What: software design document;

� Who: Engineering, Architects;

� When: (planning)/design/(coding) stage(s);

� Why: we need to know how the product will
be designed;

� QA role:

�Participate in reviews;

�Analyze for completeness;

�Spot ambiguities;

�Highlight contradictions.

FS (Functional Specification)

48

Example: Room Booking App

49

Test Plans

� The goal of test planning is to establish the list of tasks which, if
performed, will identify all of the requirements that have not been
met in the software. The main work product is the test plan.

� The test plan documents the overall approach to the
test. In many ways, the test plan serves as a summary
of the test activities that will be performed.

� It shows how the tests will be organized, and outlines all of the
testers’ needs which must be met in order to properly carry out
the test.

� The test plan should be inspected by members of the
engineering team and senior managers.

50

� What: a document describing the scope,

approach, resources and schedule of intended

testing activities; identifies test items, the features

to be tested, the testing tasks, who will do each

task and any risks requiring contingency planning;

� Who: QA;

� When: (planning)/design/coding/testing

stage(s);

Test Plan (cont’d)

51

� Why:

� Divide responsibilities between teams involved; if more
than one QA team is involved (ie, manual / automation, or
English / Localization) – responsibilities between QA teams ;

� Plan for test resources / timelines ;

� Plan for test coverage;

� Plan for OS / DB / software deployment and configuration
models coverage.

� - QA role:

� Create and maintain the document;

� Analyze for completeness;

� Have it reviewed and signed by Project Team
leads/managers.

Test Plan (cont’d)

52

Example

53

Example

54

Test Case

� A test case is a description of a specific
interaction that a tester will have in order to test
a single behavior of the software.

� Test cases are very similar to use cases, in
that they are step-by-step narratives which define
a specific interaction between the user and the
software.

� Test cases must be repeatable.

� Good test cases are data-specific, and describe each
interaction necessary to repeat the test exactly.

55

� What: a set of inputs, execution preconditions and
expected outcomes developed for a particular objective, such
as exercising a particular program path or verifying compliance
with a specific requirement;

� Who: QA;

� When: (planning)/(design)/coding/testing stage(s);

� Why:

� Plan test effort / resources / timelines;

� Plan / review test coverage;

� Track test execution progress;

� Track defects;

� Track software quality criteria / quality metrics;

� Unify Pass/Fail criteria across all testers;

� Planned/systematic testing vs Ad-Hoc.

Test Case

56

Test Case (cont’d)

� Five required elements of a Test Case:

� ID – unique identifier of a test case;

� Features to be tested / steps / input
values – what you need to do;

� Expected result / output values – what you
are supposed to get from application;

� Actual result – what you really get from
application;

� Pass / Fail.

57

Test Case (cont’d)

� Optional elements of a Test Case:

� Title – verbal description indicative of testcase objective;

� Goal / objective – primary verification point of the test
case;

� Project / application ID / title – for TC classification /
better tracking;

� Functional area – for better TC tracking;

� Bug numbers for Failed test cases – for better error
/ failure tracking (ISO 9000);

� Positive / Negative class – for test execution planning;

� Manual / Automatable / Automated parameter etc – for
planning purposes;

� Test Environment.

58

Test Case (cont’d)

� Inputs:
� Through the UI;
� From interfacing systems or devices;
� Files;
� Databases;
� State;
� Environment.

� Outputs:
� To UI;
� To interfacing systems or devices;
� Files;
� Databases;
� State;
� Response time.

Example

59

60

Test Suite

� A document specifying a sequence of actions for the

execution of multiple test cases;

� Purpose: to put the test cases into an executable

order, although individual test cases may have an

internal set of steps or procedures;

� Is typically manual, if automated, typically referred to

as test script (though manual procedures can also be a

type of script);

� Multiple Test Suites need to be organized into some

sequence – this defined the order in which the test

cases or scripts are to be run, what timing

considerations are, who should run them etc.

61

� What: document tracking each software feature from

PRD to FS to Test docs (Test cases, Test suites);

� Who: Engineers, QA;

� When: (design)/coding/testing stage(s);

� Why: we need to make sure each requirement is

covered in FS and Test cases;

� QA role:

�Analyze for completeness;

�Make sure each feature is represented;

�Highlight gaps.

Traceability Matrix (cont’d)

62

Traceability Matrix (cont’d)

63

Traceability Matrix

64

Example

65

Risk Analysis

� What: The process of assessing identified risks to estimate

their impact and probability of occurrence (likelihood).

� Likelihood = The probability or chance of an event

occurring (e.g., the likelihood that a user will make a

mistake and, if a mistake is made, the likelihood that it

will go undetected by the software)

� Impact = The damage that results from a failure (e.g.,

the system crashing or corrupting data might be

considered high impact)

66

� Who: PM, Tech Support, Sales, Engineers, QA;

� When: (design)/coding/testing stage(s);

� Why:

� It helps us choose the best test techniques

� It helps us define the extent of testing to be carried out

� The higher the risk, the more focus given

� It allows for the prioritization of the testing

� Attempt to find the critical defects as early as possible

� Are there any non-testing activities that can be

employed to reduce risk? e.g., provide training to

inexperienced personnel

Risk Analysis

67

Example

Scale 1-10

Test Case

(Feature)

Likelihood
of failure
(Eng, QA,
Tech
Support)

Impact of
failure (PM,
Tech
Support,
Sales, QA)

Risk Factor

1. Login 2 10 20

2. Create
database
record

5 7 35

3. Modify
database
record

3 6 18

Exercise
(20 mins in total)

� Ten minutes to prepare the following:

� Can you work out your test plan on a
recent or past project and share with other
colleagues?

� The plan should include at least: testing
scope, activates/items, features, testing
resources/timelines, risk analysis

� We will select two~three audiences to
share their plan (10 mins)

68

69

5 Testing Strategy and Testing
Plan

7070

Strategic Approach to Testing - 1

� Testing begins at the component level and works
outward toward the integration of the entire
computer-based system.

� Different testing techniques are appropriate at
different points in time.

� The developer of the software conducts testing
and may be assisted by independent test groups
for large projects.

� The role of the independent tester is to remove
the conflict of interest inherent when the builder
is testing his or her own product.

71

Strategic Approach to Testing (cont)

• Testing and debugging are different
activities.

• Debugging must be accommodated in any
testing strategy.

• Need to consider verification issues
– are we building the product right?

• Need to Consider validation issues
– are we building the right product?

72

Strategic Testing Issues

� Specify product requirements in a
quantifiable manner before testing starts.

� Specify testing objectives explicitly.

� Identify the user classes of the software
and develop a profile for each.

� Develop a test plan that emphasizes rapid
cycle testing.

73

Strategic Testing Issues (cont)

� Build robust software that is designed to
test itself (e.g. anti-bugging).

� Use effective formal reviews as a filter prior
to testing.

� Conduct formal technical reviews to assess
the test strategy and test cases.

74

Testing Levels

�Various development models are there in the market

�Within each development model, there are corresponding

levels/stages of testing

�There are four basic levels of testing that are commonly

used within various models:

� Component (unit) testing

� Integration testing

� System testing

� Acceptance testing

75

Testing Levels

� Component testing: The testing of individual software

components.

� Integration testing: Testing performed to expose defects

in the interfaces and in the interactions between integrated

components or systems.

� System testing: The process of testing an integrated

system to verify that it meets specified requirements.

� Acceptance testing: Formal testing with respect to user

needs, requirements, and business processes conducted to

determine whether or not a system satisfies the acceptance

criteria and to enable the user, customers or other

authorized entity to determine whether or not to accept the

system.

76

Stages of Testing

� Module or unit testing

� Integration testing

� Function testing

� Performance testing

� Acceptance testing

� Installation testing

77

Unit Testing

• Program reviews.

• Formal verification.

• Testing the program itself

78

Structural (White box)

testing
� Testing based on an analysis of the internal structure

of the component or system / architecture of the

system, aspects such as a calling hierarchy, data flow

diagram, design specification, etc.;

� May be performed at all test levels - system, system

integration, or acceptance levels (e.g., to business

models or menu structures);

� Structural techniques are best used after specification-

based techniques;

� Can assist in measuring the thoroughness of testing by

assessing the degree of coverage of a structure;

� Tools can be used to measure the code coverage.

7979

Example

.

80

Black box testing

� The program is treated as black box;

� Inputs are fed into the program, outputs

observed;

� Search for interesting and challenging input

combinations and conditions – they are most

likely to expose an error.

Based on the 3 kinds of information:

� Input coverage tests, based on an

analysis of the intended inputsintended inputs,

independent of their actions or outputs

� Output coverage tests, based on an

analysis of the intended outputsintended outputs,

independent of their inputs or actions

� Functionality coverage tests, based on

an analysis of the intended intended

actions/functionsactions/functions, with or without their

inputs and outputs.

Three kinds of Black-box

testing methods

81

82

Unit Testing

� Does "Unit Testing" falls under white box or
black box testing?

83

Go for black box or white box?

• Maximum # of logic paths - determine if
white box testing is possible.

• Nature of input data.

• Amount of computation involved.

• Complexity of algorithms.

84

Unit Testing Details

• Interfaces tested for proper information flow.

• Local data are examined to ensure that integrity is
maintained.

• Boundary conditions are tested.

• Basis path testing should be used.

• All error handling paths should be tested.

• Drivers and/or stubs need to be developed to test
incomplete software.

85

Example

.

86

Generating Test Data

• Ideally want to test every permutation of
valid and invalid inputs

• Equivalence partitioning it often required to
reduce to infinite test case sets

– Every possible input belongs to one of the
equivalence classes.

– No input belongs to more than one class.

– Each point is representative of class.

87

Testing Data Guidelines

� Simplicity: To make tests readable, test data
should be simple. From a testing point of
view, if there is no difference between “24.54”
and “1”, then we use 1 for human reading.

� Heterogeneity: To handle multiple inputs,
use different values for each input. For
example, p (2, 3) is better than p (2, 2), for p
(3, 2) is order irreversible, i.e. p (2, 3) ≠ p (3,
2).

88

Testing Data Guidelines
(cont’d)

� Realistic Data: Try to use realistic data which
simulates how the system will be used.

� Evident Data: The variance between expected
and actual results, if any, should be apparent
when a program runs the unit test.

89

Regression testing (retesting)

� A test that was written when a bug was fixed. It ensure that

this specific bug will not occur again. (retesting after

changes are made.)

� The purpose of regression testing is to ensure that

changes such as those mentioned above have not

introduced new faults

� Applies to functional, non-functional and structural testing;

� Good candidate for automation.

90

Regression Testing

• Check for defects propagated to other modules
by changes made to existing program

– Representative sample of existing test cases is used to
exercise all software functions.

– Additional test cases focusing software functions likely
to be affected by the change.

– Tests cases that focus on the changed software
components.

Discussion Points

� Could we reuse the same tests as the
regression tests?

� Could we test the same areas as before,
but we use different (increasingly complex)
tests?

91

Example of Regression Testing

92

93

Integration Testing

• Bottom - up testing (test harness).

• Top - down testing (stubs).

• Big Bang.

• Sandwich testing.

94

Bottom-Up Integration Testing

• Low level components are combined in clusters
that perform a specific software function.

• A driver (control program) is written to coordinate
test case input and output.

• The cluster is tested.

• Drivers are removed and clusters are combined
moving upward in the program structure.

95

Top-Down Integration Testing

• Main program used as a test driver and stubs are
substitutes for components directly subordinate to it.

• Subordinate stubs are replaced one at a time with real
components (following the depth-first or breadth-first
approach).

• Tests are conducted as each component is integrated.

• On completion of each set of tests and other stub is
replaced with a real component.

• Regression testing may be used to ensure that new errors
not introduced.

96

Testing Strategies

Incremental: testing modules as they are developed,

each piece is tested separately. Once all elements are

tested, integration/system testing can be performed.

Requires additional code to be written, but allows to

easily identify the source of error

Big Bang: testing is performed on fully integrated system,

everything is tested with everything else.

No extra code needed, but errors are hard to find.

97

Sandwich Testing

� Sandwich testing is a type of testing that consist of two

parts, they are Top-down approach and Bottom-up

approach.

� It combines the advantages of both Bottom-up testing

and Top-down testing at a time.

� Sandwich approach is useful for very large projects

having several subprojects.

Summary

Button UP Top Down Big Bang Sandwich

Integration Early Early Early

Stub No Yes Yes Yes

Parallelism Medium Low High Medium

Test
Specification

Easy Hard Easy Medium

Product
Control Seq

Easy Hard Easy Hard

98

99

Functional testing

� Testing based on an analysis of the specification of the functionality
of a component or system.

� The functions are "what" the system does:

� They are typically defined or described in work products such as
a requirements specification, use cases, or a functional
specification;

� They may be undocumented;

� Functional tests are based on both explicit and implicit features
and functions;

� They may occur at all test levels, e.g., tests for components may
be based on a component specification;

� Functional testing focuses on the external behavior of the software
(black-box testing).

100

Non-Functional testing

� Focuses on "how" the system works;

� Non-functional tests are those tests required to

measure characteristics of systems and software that

can be quantified;

� These quantifications can vary and include items such

as: response times, throughput, capacity for

performance testing etc.

� Testing the attributes of a component or system that

do not relate to functionality, e.g. reliability, efficiency,

usability, maintainability, compatibility and portability.

101

Smoke Test Cases

� A smoke test is a subset of the test cases that
is typically representative of the overall test
plan.
� Good for verifying proper deployment or other non
invasive changes.

� Useful for verifying a build is ready to send to test.

� Not substitute for actual functional testing.

� It is an analogy with electronics, where the first test
occurs when powering up a circuit: if it smokes, it's
bad.

102

Validation Testing

• Ensure that each function or performance
characteristic conforms to its specification.

• Deviations (deficiencies) must be negotiated with
the customer to establish a means for resolving
the errors.

• Configuration review or audit is used to ensure
that all elements of the software configuration
have been properly developed, cataloged, and
documented to allow its support during its
maintenance phase.

103

System Testing

• Recovery testing
– checks system’s ability to recover from failures

• Security testing
– verifies that system protection mechanism prevents

improper penetration or data alteration

• Stress testing
– program is checked to see how well it deals with

abnormal resource demands

• Performance testing
– tests the run-time performance of software

104

Acceptance Testing

• Making sure the software works correctly for
intended user in his or her normal work
environment.

• Alpha test
– version of the complete software is tested by customer

under the supervision of the developer at the
developer’s site

• Beta test
– version of the complete software is tested by customer

at his or her own site without the developer being
present

105

Testing Life Cycle

• Establish test objectives.

• Design criteria (review criteria).
– Correct.

– Feasible.

– Coverage.

– Demonstrate functionality .

• Writing test cases.

• Testing test cases.

• Execute test cases.

• Evaluate test results.

106

Test Team Members

• Professional testers.

• Analysts.

• System designers.

• Configuration management specialists.

• Users.

107

Testing Tools

• Simulators.

• Monitors.

• Analyzers.

• Test data generators

• Test Management

108

Defect Tracking

� The defect tracking system is a program that testers use to
record and track defects. It routes each defect between testers,
developers, the project manager and others, following a
workflow designed to ensure that the defect is verified and
repaired.
� Every defect encountered in the test run is recorded and
entered into a defect tracking system so that it can be
prioritized.

� The defect workflow should track the interaction between
the testers who find the defect and the programmers who
fix it. It should ensure that every defect can be properly
prioritized and reviewed by all of the stakeholders to
determine whether or not it should be repaired. This process
of review and prioritization referred to as triage.

109

Test Automation

� Test automation is a practice in which testers
employ a software tool to reduce or eliminate
repetitive tasks.
� Testers either write scripts or use record-and-playback

to capture user interactions with the software being
tested.

� This can save the testers a lot of time if many
iterations of testing will be required.

� It costs a lot to develop and maintain automated test
suites, so it is generally not worth developing them for
tests that will executed only a few times.

110

Discussion

Your boss put you in charge of testing a new system,

to be developed by an internal team.

Before you start testing, what need to be done?

How to get ready?

111

6 Test Case Optimization

112

Equivalence class partitioning

� A black box test design technique in which test cases are

designed to execute representatives from equivalence

partitions. In principle, test cases are designed to cover each

partition at least once.

� Creates the minimum number of black box tests needed to

provide minimum test coverage

� Steps:

� Identify equivalence classes, the input values which are

treated the same by the software:

� Valid classes: legal input values;

� Invalid classes: illegal or unacceptable input values;

� Create a test case for each equivalence class.

113

Equivalence class partitioning (cont’d)

Invalid Valid Invalid

<$1000 $1000-70000 >$70000

Equivalence partition (class):

– A portion of an input or output domain for which the behavior of a
component or system is assumed to be the same, based on the
specification.

114

Boundary value testing
– A black box test design technique in which test cases are
designed based on boundary values.

– Each input is tested at both ends of its valid range(s) and just
outside its valid range(s). This makes sense for numeric ranges
and can be applied to non-numeric fields as well. Additional issues,
such as field length for alphabetic fields, can come into play as
boundaries.

– Boundary value: An input value or output value, which is on the
edge of an equivalence partition or at the smallest incremental
distance on either side of an edge, for example the minimum or
maximum value of a range.

115

Boundary value testing (cont’d)

– Run test cases at the boundary of each input:

– Just below the boundary;

– Just above the boundary;

– The focus is on one requirement at a time;

0 1 10 11

– Can be combined across multiple requirements – all valid
minimums together, all valid maximums together;

– Invalid values should not be combined.

� A field can accept integer values between 20 and 50.

� What tests should we try?

What Test Case?

116

Testing Integer-Input Tests

Common answers:

Test Why it’s interesting Expected result

20 Smallest valid value Accepts it

19 Smallest -1 Reject, error msg

0 0 is always interesting Reject, error msg

Blank Empty field, what’s it do? Reject? Ignore?

49 Valid value Accepts it

50 Largest valid value Accepts it

51 Largest +1 Reject, error msg

-1 Negative number Reject, error msg

4294967296 2^32, overflow integer? Reject, error msg
117

• Combinations of configuration parameter values

For example, telecom app may be configured to work with
different types of call (local, long distance, inter), billing (low
bandwidth, high bandwidth), access (A plan, B plan, C plan).

Too Many Combinations

• Combinations of test sequences

� For example, in mobile application, there are many steps
and each step has many choices.

� If there are k choices in each step, after n steps there are
k x k x .. x k = kn different test sequences.

� It is not practical to test all these sequences!!

118

The Find takes 3 inputs:

• Find what : a text string

• Match case: yes or no

• Direction: up or down

Combinatorial Example: Find

We simplify this
by considering
only 3 values for
the text string,
say “Lee”, “Ip”
and “Chan”.

119

1. How many combinations of these 3 variables are

possible?

- Find what has 3 values (Lee, Ip, Chan) (L I C)

- Match case has 2 values (Yes / No) (Y N)

- Direction has 2 values (Up / Down) (U D)

2. List ALL the combinations of these 3 variables (total

12 cases)

L Y U I Y U C Y U

L Y D I Y D C Y D

L N U I N U C N U

L N D I N D C N D

Combinatorial Example

120

TC Find what Match case Direction Expected result

1 Lee yes up find Lee

2 Ip no down find Ip

3 abc yes up ‘invalid input’

Test Cases

Input Output

121

Pairwise testing

� All-pairs testing or pairwise testing is a
combinatorial method of software testing
that, for each pair of input parameters to
a system (typically, a software
algorithm), tests all possible discrete
combinations of those parameters.

� Using carefully chosen test vectors, this
can be done much faster than an
exhaustive search of all combinations of
all parameters, by "parallelizing" the tests
of parameter pairs.

122

How and Why Pairwise Testing
Works

� It is based on the observation that
most faults are caused by
interactions of at most two factors.

� For example, there could be higher
chance for “Zip+Country” to get
error than for
“Province+Zip+Country”

� Why?
123

3 Variables with 2 Values Each

� P1-P2, P2-P3, P1-P3

124

Example

� A Simple Airbnb-Like App

� Combinations: 2x2 = 4

125

Example

Combination number Bed linen Tea

1 checked checked

2 unchecked checked

3 checked unchecked

4 unchecked unchecked
126

Example

127

Example

Combination
number

Seat type Bed linen Tea Gypsies Demobees

1 Berth checked checked checked checked

2 Coupe checked checked checked checked

3 Lux checked checked checked checked

4 Berth unchecked unchecked unchecked unchecked

5 Coupe unchecked unchecked unchecked unchecked

6 Lux unchecked unchecked unchecked unchecked

7 Berth unchecked unchecked unchecked checked

8 Coupe unchecked unchecked unchecked checked

...

Combinations (all): 3x2x2x2x2 = 48

128

Example: Pairwise Applied

Combinations (pairwise technique applied) = 6

Combination Seattype Bedlinen Tea Gypsies Demobees

1 Berth checked checked checked checked

2 Berth unchecked unchecked unchecked unchecked

3 Coupe checked unchecked checked unchecked

4 Coupe unchecked checked unchecked checked

5 Lux checked checked unchecked unchecked

6 Lux unchecked unchecked checked checked

129For more information: http://www.pairwise.org/

Another Example: Pizza App

130

Simplified pizza ordering:

6x4x4x4x4x3x2x2x5x2
= 184,320 possibilities

How to minimize the number of test cases?

1. Test the most common or important combination,

and then vary one or more parameters for the next test.

All singles:All singles: all individual valid values testedall individual valid values tested

For the Find example, use 3 test cases:
(L, Y, U)

(I, N, D)

(C, Y, U)

Try to sample from the input space in way that assures a

certain level of combination coverage.

2. Test all pair-wise combinations (given any 2 parameters,
every combination of values of these two parameters are covered

in at least one test case)

All pairs (2All pairs (2--way)way) �� all pairs of valid valuesall pairs of valid values 131

How to minimize the number of test cases?

3.3. All triples (3All triples (3--way)way) �� all triplets of valid valuesall triplets of valid values

For the ordering Pizza example,For the ordering Pizza example,

4.4. All NAll N--tuplestuples �� all combinations of valid valuesall combinations of valid values

(N is the number of input parameters.)

Every possible combination of values of the parameters must be
covered

Too many, Not practical!Not practical!

132

Call Coverage
� Measure whether we executed each function

call.

� The hypothesis is that faults commonly occur
in interfaces between modules.

� Also known as call pair coverage (try to
achieve 100% call coverage (test all calls)

MA

MB MC

MA calls MB, and

MA also calls MC

133

Test tool computing the coverage

JCover for Java

Identify the

statements

executed

during testing.

134

135

Exercise (10 mins)

Use pair-wise technique to

test the following app

Find the number of exhaustive

test ?

Multiplying the two largest

values to find out the

number of pair wise test?

136

7 Measurement and Defect

137

� A team testing 50,000LOC of code

� Created 1,200 test cases

� Found 99 defects

� Defects were fixed and no failures appeared in

further testing

No more defects

in the code?

Is this good results?

138

Test Management Need Metrics

To be effective, managers must have access to the right

information for making the crucial decisions.

Manager need to answer:

• Is the system ready to go live?

• If I go live now what risk is associated with that?

• What coverage have we achieved in our testing to date?

• How much more testing is there to do?

• Can I prove the system is really tested?

• What is the impact of this change and what must be retested?

“One accurate measurement is worth 1000 expert

opinions” Grace Murray Hopper, Rear Admiral, US Navy

139

Entity Attribute Metric

Source code Size KLOC (line count)

Source code Quality defect/KLOC

Testing process Duration time in hours from

start to finish

Testing process Efficiency test case/ defect

Example Metrics

Source code
•• SizeSize

•• qualityquality

Measure

Metrics:Metrics:

KLOC

Defect/KLOC

140

Tools

� You might want to consider Mylyn.

� It is a task based plugin for Eclipse.

� It lets you get a list of bugs assigned to
you and then Mylyn tracks the time you
spend on it.

141

What to Measure?

metrics

Test Process
Software

product
Input

metricsmetrics

Product metrics: metrics related to test results or the quality
(internal characteristics) of the product being tested
[related to outputoutput of the test process]

Process metrics: metrics used to assess the effectiveness of
the testing processprocess.

Resource metrics (also called project metrics): metrics used
to assess the cost and productivity of testing [related to

inputinput of the test process]

3
 T

y
p
e
s
 o

f
M

e
tr

ic
s

141

142

Product Metrics

1 Defect density

2 Defect age

3 Defect response time

4 Defect cost

142

143

Process Metrics

Coverage Metrics

Instruction coverage

Path coverage

Requirement coverage

Effectiveness Metrics
%Defects uncovered in testing

Test efficiency

Defect removal effectiveness

(DRE)

% test cases successfully

executed
% fixed defects

144

Resource Metrics

Resources consumed in testing process

and the productivity of testing

Relative test cost

Cost to locate defect

%Achieving budget

% test cases prepared

Productivity

145

Defect density = number of defects detected / system size

(e.g. defect/KLOC, defect/FP)

� The higher the number of defects, the poorer the product

quality.

• Defect density can be used to perform the following:

• predict remaining defects by comparison with

expected defect density;

• determine if sufficient testing has been completed

based on predetermined goals;

• establish standard defect densities for comparison

and prediction.

Strength: good correlation to the ability of the test process to

eliminate defects.

1. Defect Density

146

According to a study of 110 projects:

• DD range from 0.05 to 50 defects/KLOC

• Languages: C, Java, C++, Other

According to Steve McConnell,

• Industry data is 1-25 defects/KLOC.

1. Defect Density

147

� Defects are injected and removed at different phases

of a software development cycle

� The cost of each defect injected in phase X and

removed in phase Y increases with the distance

between X and Y

� An effective testing method would find defects earlier

than a less effective testing method would.

2. Defect Age

148

2. Defect Age

Defect age = time between when a defect is

introduced to when it is detected

Defect age is the difference of the numbers corresponding to

phase introduced & phase detected.

Average defect age=phase detected-phase introduced

number of defects

(Summed over all the defects)

High number means V&V should be done earlier.

Defect Introduced Detected Fixed

Time

Age Response Time

149

3. Defect Response Time

Defect response time = time between when a

defect is detected to when it is fixed or

closed

The defect response time should not be too

long; otherwise, the users will be dissatisfied

(take too long to fix defects).

150

4. Defect Cost

Defect cost = cost to analyze the defect +

cost to fix it +

cost of failures incurred due to the defect

This metric provides data to calculate cost-benefit of any

testing improvement project.

Example:

Will introducing new test tool bring benefits more than its

cost?

151

Suppose

“We have executed 90% of the test cases

and 80% passed.”

This means nothing unless it is known ‘what’

was tested, and how good were the test

cases.

=> We need coverage metrics (process

metrics) to tell us what was tested.

152

Question

Do you know how many test cases

used by Microsoft for Office 2007?

153

Defect Removal Model

Defect

Detection

Correction

Defect

existing

on phase

entry

Undetected defects

Detected

defects

Defect

existing

on phase

exit

Bad fixes
(or incorrect
Repairs)

Development Phase X

Defect

Injected

during

the phase

Defects removed = defects detected – bad fixes

Defects at the exit of a development phase
= Defects escaped from previous phase + Defects injected in
current phase - Defects removed in current phase

Defects

removed

154

N

DRE = x 100% where

(N+M)

• N is number of defect removed by this development phase.

• But, since we don’t know M, we use S to approximate M.

• S is number of defect removed by subsequent phases, which are

present at the exit of the current development phase.

Defect Removal Effectiveness (DRE)

Current

Development

Phase

(I defects injected)

Subsequent

Phase 1

Subsequent

Phase 2

Remove N defects Remove S defects

M

defects

E

defects

155

% Fixed Defects

%Fixed defects = Fixed defects

Total defects

� From defect log.

� Look at the trend.

� Falling % should be

a signal for alarm

� Weakness: The

focus should be on

the defect trend,

rather than the %.

Fixed defects

Example: Trend of Fixed Defects

(Typically a S shade curve)

156

Prioritize Defect

• Assign each defect a severity rating and a likelihood rating.

Priority = severity x likelihood

• Severity rating of 1 is the most severe.

• The defect with the 1 rating should be fixed first. Lower

severity defects allow longer time to fix.

What Defects to Fix First?

Severity Rating Value

Hang 1

Loss, no workaround 2

Loss with Workaround 3

Inconvenient 4

Enhancement 5

Likelihood Rating Value

Always 1

Usually 2

Sometimes 3

Rarely 4

Never 5

157

Relative Test Cost

Relative test cost = test cost .

total system cost

� test cost should be between 15-40% of total

development effort

For critical systems (financial systems), testing can

consume > 70% of the budget

☺ Strength: shows the amount of the development

effort that is allocated to testing. It provides an

indication as to the extent of testing

� Weakness: there may not be a direct relationship

between the effectiveness of testing and the amount

of time/effort allocated to testing.

8 Government Initiative

158

Mobile Applications Testing
Competency Training for SME

� This government-funded project aims to
support a thriving ICT industry, through
developing, training and nurturing ICT SME
talents in mobile apps testing.

� We offer free mobile app testing seminars and
training workshops to SMEs focusing on mobile
apps development.

159

Coming Workshops

� Demo Mobile App

� Hands-on Approach:

Distributed JMeter

GUI Testing

Power Consumption

� Virtual Machine Environment

� Training Video

160

Workshop Highlight

161

Thank you

� Your feedback is important to us.
Please fill in the evaluation form.

