# Waterless Dyeing Technology

Smart Manufacturing and Materials Division



- Textile industry is one of the biggest consumers of water
  - On average, an estimated 100–150 liters of water are needed to process 1 kg of textile material
  - In garment manufacturing, about 50% of waste water comes from textile dyeing and finishing processes









#### **Country Regulations**

List of selected countries that have a prominent textile industry and if regulations were identified.

|    | Country     | Obtained a wastewater regulation<br>with effluent values |
|----|-------------|----------------------------------------------------------|
| 1  | Bangladesh  | Yes (T)                                                  |
| 2  | Brazil      | Yes                                                      |
| 3  | Cambodia    | Yes                                                      |
| 4  | China       | Yes (T)                                                  |
| 5  | Honduras    | •                                                        |
| 6  | India       | Yes (T)                                                  |
| 7  | Indonesia   | Yes (T)                                                  |
| 8  | Malaysia    | Yes (T)                                                  |
| 9  | South Korea | Yes                                                      |
| 10 | Taiwan      | Yes (T)                                                  |
| 11 | Thailand    | Yes (T)                                                  |
| 12 | Turkey      | Yes (T)                                                  |
| 13 | Vietnam     | Yes (T)                                                  |
| 14 | Sri Lanka   | Yes (T)                                                  |

#### Stringent control on pollutant discharge

The contaminated water must be treated prior to disposal or recycling

#### Water Ten Plan - Implications Across Target Industries

| Target Industries                           | Compliance By<br>2016/17 or<br>Shutdown |   | Strictly Control<br>Projects Along<br>7 Key Rivers |   | Wastewater<br>Reuse | Water<br>Efficiency To<br>Reach<br>Advance<br>Levels |
|---------------------------------------------|-----------------------------------------|---|----------------------------------------------------|---|---------------------|------------------------------------------------------|
| Paper & Pulp                                | ~                                       | ~ |                                                    | ~ | ~                   | ~                                                    |
| Coking                                      | ~                                       | ~ |                                                    |   |                     |                                                      |
| Non-ferrous Metals                          |                                         | ~ | ~                                                  | ~ |                     |                                                      |
| Textile Dyeing & Finishing                  | ~                                       | ~ | ~                                                  | ~ | ~                   | ~                                                    |
| Leather                                     | ~                                       | ~ |                                                    |   | ~                   |                                                      |
| Nitrogen Fertiliser                         |                                         | ~ |                                                    |   |                     |                                                      |
| Pesticide                                   | ~                                       | ~ |                                                    |   |                     |                                                      |
| Agriculture Food Production<br>& Processing |                                         | ~ |                                                    |   |                     |                                                      |
| Pharmacy Production                         |                                         | ~ | ~                                                  | ~ |                     |                                                      |

Source: China Water Risk, Water Pollution Prevention & Control Action Plan (Water Ten)



#### Notes:

(T) = Has values specific to the textile industry

\* Does not have national regulation regarding industrial wastewater discharge

Source: Textile Industry Wastewater Discharge Quality Standards - ZDHC



#### **!** Rising costs of water and wastewater treatment









## **Dirty Laundry**

Unravelling the corporate connections to toxic water pollution in China



WATER MATTERS DECISIONS TODAY FOR WATER TOMORROW

### TODAY'S FIGHT FOR THE FUTURE OF FASHION


Is there room for fast fashion in a Beautiful China?

RISK

### **Water-Saving Solutions**

- Air-Flow Dyeing Machine
  - > The fabric transport is carried out by air only, no dye liquor or aqueous medium is required to transport the fabric.
  - > A 53% reduction in water consumption.





### **Water-Saving Solutions**

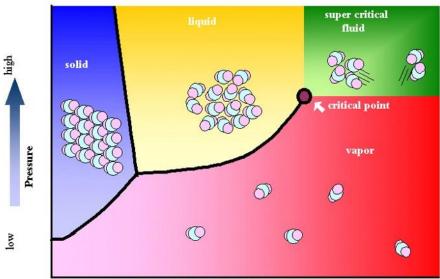
- AVITERA® SE Dyes
  - Poly-reactive dyes with three reactive groups for cotton and other cellulosic fibers
  - > Rapid and very high exhaustion
  - > High fixation (~90%)
  - Excellent solubility, high diffusion and outstanding washing-off properties, making them suitable for application at ultra-low liquor ratios.



### Waterless/Nearly Waterless Dyeing

- I) Digital Printing
- II) Sublimation
- III) AirDye®
- IV) Supercritical Fluid Dyeing








## What is a Supercritical Fluid?

A supercritical fluid is any substance is any substance at a temperature and pressure above its critical point, where distinct liquid and gas phases do not exist.

- It exhibits both the properties of a gas and a liquid.
  - Dense like a liquid to dissolve materials
  - Low viscosity, high diffusivity, no surface tension like a gas



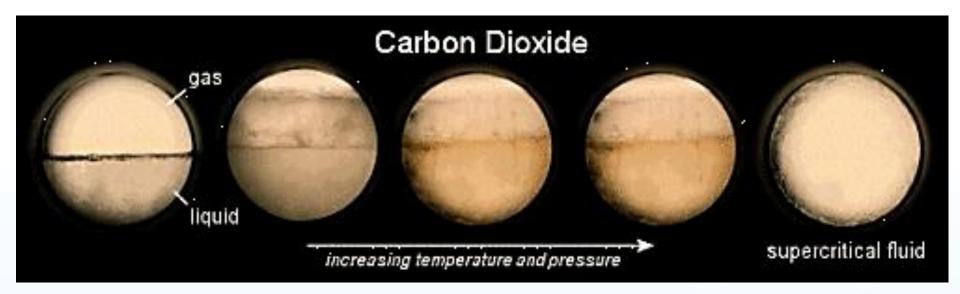
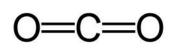

Temperature

Table 1. Order of magnitude comparison of physical properties substance\*

| State               | Density [g/cc] | Viscosity [g/cm-s] | Diffusivity [cm <sup>2</sup> /s] |
|---------------------|----------------|--------------------|----------------------------------|
| Gas                 | 0.001          | 10 <sup>-1</sup>   | 10-4                             |
| Supercritical fluid | 0.1-1.0        | 10-4-10-3          | 10-4-10-3                        |
| Liquid              | 1.0            | 10 <sup>-5</sup>   | 10-2                             |




high





### **Green Solvent — Supercritical Carbon Dioxide**

### Carbon Dioxide (CO<sub>2</sub>)





- > Non-toxic
- Non-flammable
- Non-corrosive
- > Does not contribute to smog
- No acute ecotoxicity

- Inexpensive
- Readily available
- Inexhaustible resource



### **Green Solvent – Supercritical Carbon Dioxide**

However...

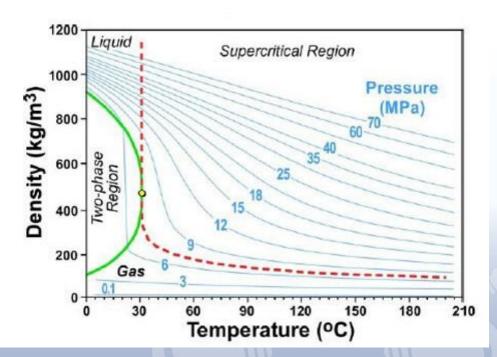
### Carbon Dioxide (CO<sub>2</sub>)



- ➤ A greenhouse gas → Global warming
- CO<sub>2</sub> concentration in the atmosphere increased from about 280 ppm in 1800 to 315 ppm in 1960, and since the mid-1900s, CO<sub>2</sub> levels have been continually increasing at an average annual rate of slightly more than 1 ppm. Nowadays the CO<sub>2</sub> concentration is about 380 ppm.
- Processes, which apply CO<sub>2</sub> as a solvent, do not increase CO<sub>2</sub> emissions, but rather provide an opportunity for recycling of waste CO<sub>2</sub>.

3807 CO2 help

### **Supercritical Carbon Dioxide**


| Critical Pressure (bar)               | 73.8  |
|---------------------------------------|-------|
| Critical Temperature (°C)             | 31.1  |
| Critical Density (g/cm <sup>3</sup> ) | 0.468 |

#### Tunable solvating power

- Tuning of solvent properties easily as a function of temperature and pressure.
  - → Can dissolve compounds of different chemical structures

#### A 'hybrid solvent'

 Can be tuned from liquid-like to gas-like without crossing a phase boundary

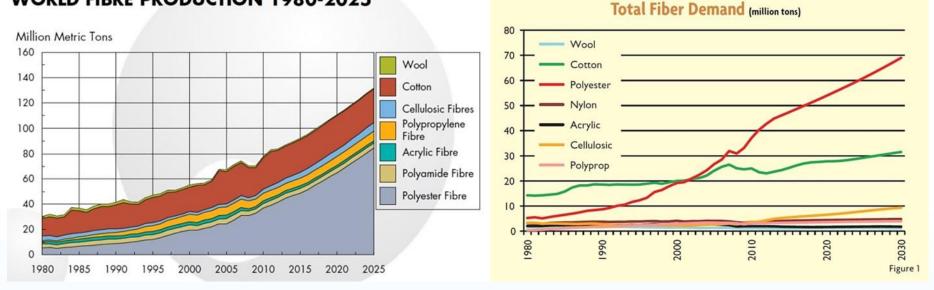


## **Applications**

- Food industry
- Cosmetic industry
- Pharmaceutical industry
- Polymer and plastics industries
- Chemical industry
- Material industry
- Wood industry
- Textile industry

- Extraction
- Purification
- Sterilization
- Cleaning
- Micro- and nanoparticles synthesis
- Aerogel preparation
- ..



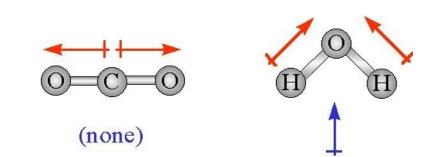

## **Supercritical Carbon Dioxide Dyeing**

#### Historical Survey

- 1989 The first experiences of dyeing of PET in a high pressure phase equilibrium plant of 6 mL were made at Deutsches Textilforschungszentrum Nord-West e.V. (DTNW) and Prof. G M Schneider from the Ruhr-University of Bochum (Germany).
- 1990 A static dyeing apparatus consisting of a 400 mL autoclave with a stirrable, perforated dyeing beam was developed by DTNW.
- 1991 The first dyeing machine on a semi-technical scale with a volume of 67 L was constructed by Jasper GmbH & Co., Velen (Germany).
- 1995 UHDE Hochdrucktechnik GmbH, Hagen (Germany) and DTNW developed a new  $CO_2$  dyeing pilot plant with an autoclave of 30 L, including an extraction cycle for removal and separation of excess dyes and for recycling of  $CO_2$ .
- 2009 DyeCoo Textile Systems BV (Netherlands) launched the first commercial CO<sub>2</sub> dyeing machine with a volume of 200 L.



### **Polyester Fibers Continue To Grow**




#### WORLD FIBRE PRODUCTION 1980-2025

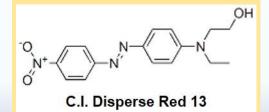
- The production and demand of polyester have continued to grow at a significantly faster rate than all other fiber types
- Polyester makes up 95%+ of future global synthetic fibre production growth
- From 1980–2014, total fiber demand growth has been 40.7 million tons 73.4% of which is down to polyester

## **Supercritical Carbon Dioxide Dyeing**

- Supercritical carbon dioxide (scCO<sub>2</sub>)
  - Non-polar solvent the dipoles of the two bonds cancel one another
    - $\rightarrow$  Direct dissolve of **disperse dyes**
- Disperse dyes

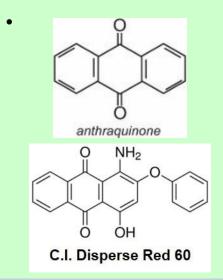


- Typically non-ionic and contain no strong hydrophilic (water loving) groups
- Dye particles are held in dispersion by surface-active agent (surfactant)
- Have substantivity for hydrophobic fibres, like polyester and acetate






### **Chemical Structure of Disperse Dyes**


#### **Azo Dyes**

- Account for more than 50% of the total commercialized disperse dyes
- The characteristic feature is the presence in the structures of one or more azo groups, -N=N-



#### Anthraquinone Dyes

 A significant proportion (20%) of the disperse dyes



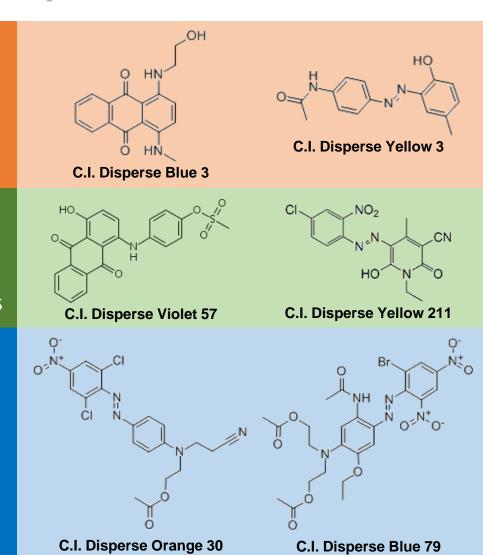
#### Others

- Nitroarylamino dyes
- Coumarin dyes
- Methine dyes
- Naphthostyryl dyes
- Quinophthalone dyes
- Formazan dyes
- Benzodifuranone dyes

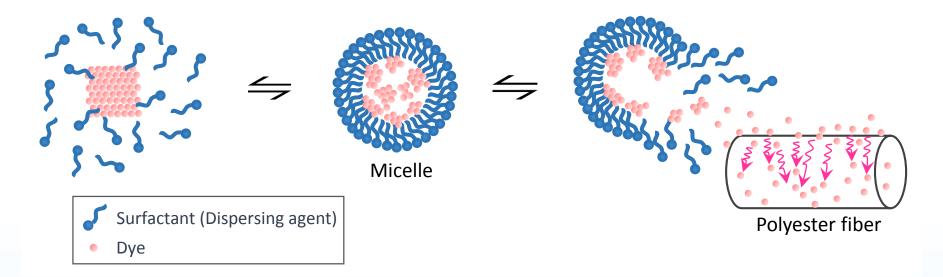


### **Classes of Disperse dyes**

#### Low Energy


- low molecular weight
- high dyeing rate
- low sublimation fastness

#### Medium Energy


- moderate molecular weight
- moderate dyeing rate
- moderate sublimation fastness

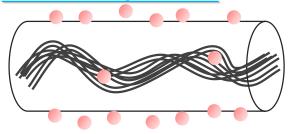
#### High Energy

- high molecular weight
- low dyeing rate
- high sublimation fastness



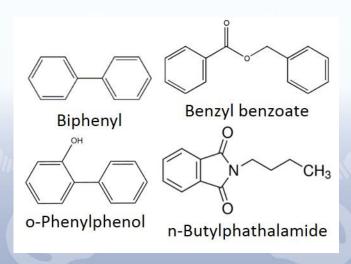
### **Disperse Dyeing Mechanism**




- 1) Some of the dyes dissolve in the water of the dyebath in the form of micelles with the aid of surfactant.
- 2) Molecules of dye are transferred from solution to the surface of the fibre.
- 3) The adsorbed dye diffuses monomolecularly into the fibre.

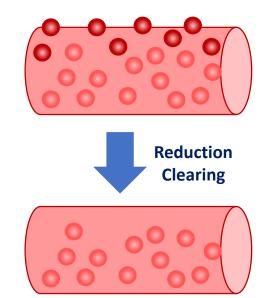



## **Disperse Dyeing Mechanism**

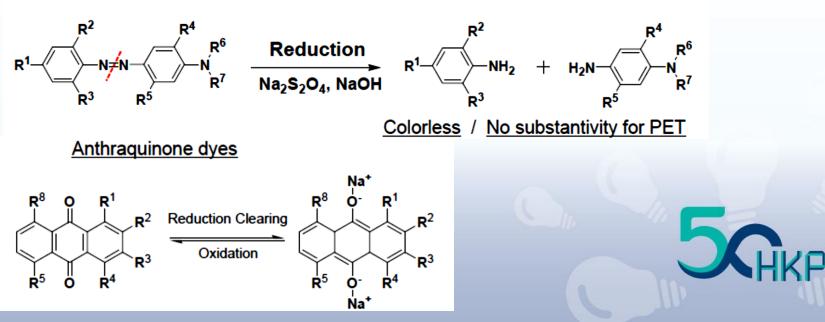

- Rate of dyeing depends on the rate of diffusion
  - Dyes of small molecular size have higher diffusion coefficients
    - The washing fastness is only fair
    - → Dyes of higher molecular weight provide adequate fastness
- To increase the dyeing rate and dye in deep shade
  - > Higher dyeing temperatures above 100°C
    - $\rightarrow$  The swelling of fibre
  - Utilization of carriers
    - $\rightarrow$  Increases affinity to polyester and swells it

#### At low temperature

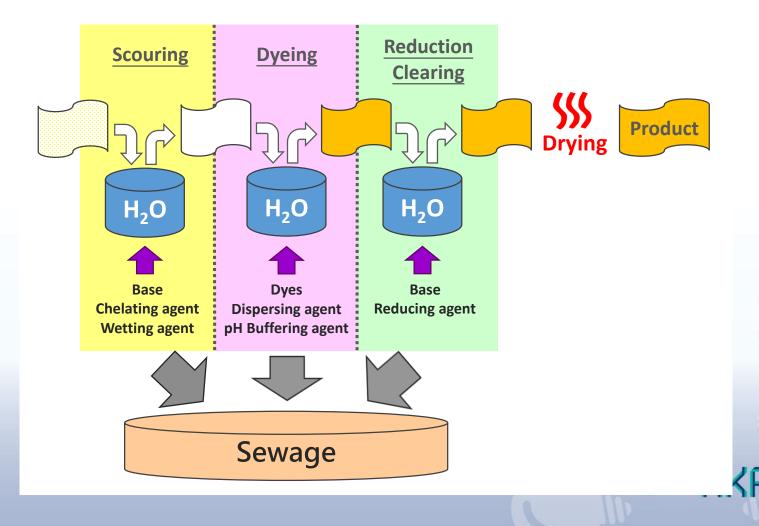




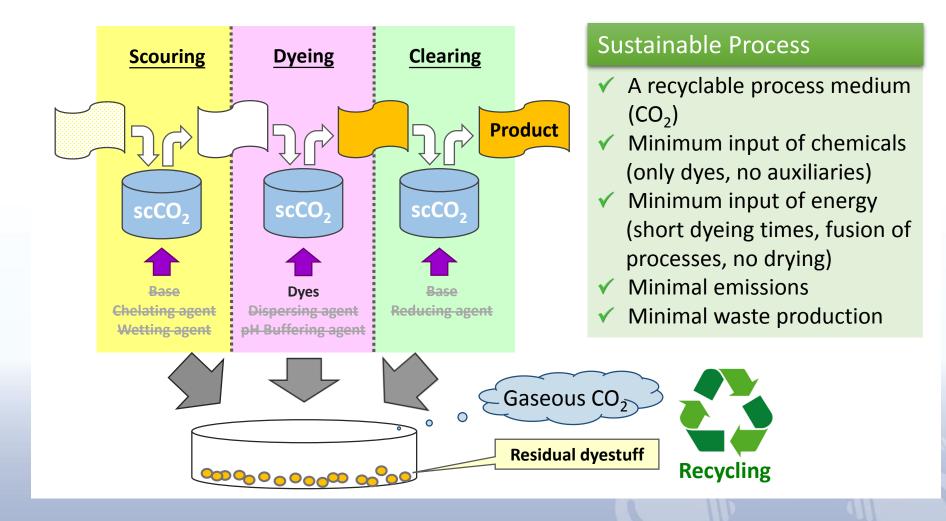


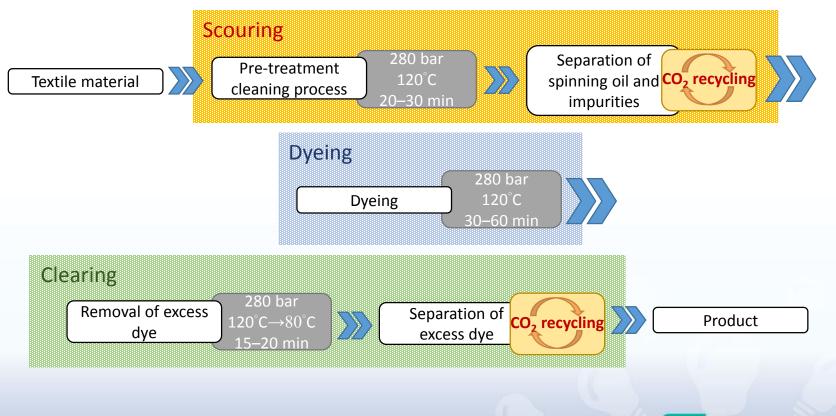

## **Reduction Clearing**


- To remove excess dye on the fiber surfaces
  - Improve wash, sublimation and crock fastness as well as the brightness of the shade
- The dyed fibre is treated in a strong reducing bath made up of sodium hydrosulfite (sodium dithionite, Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub>)and caustic soda (sodium hydroxide, NaOH)

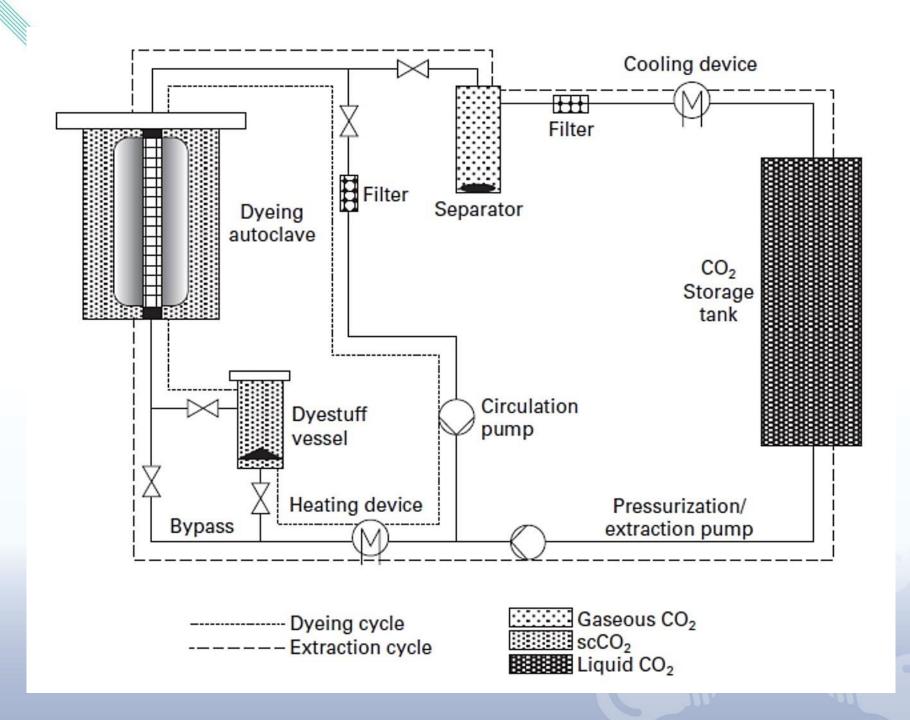



Azo dyes




### **Conventional Water-Based Dyeing Process**



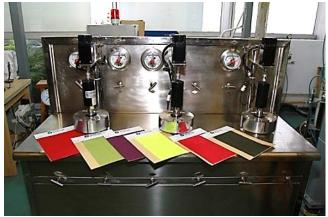

### **Supercritical Carbon Dioxide Dyeing Process**



### **Supercritical Carbon Dioxide Dyeing Process**








### **Supercritical Carbon Dioxide Dyeing Process**





- ScCO<sub>2</sub> Dyeing Systems HKPC<sup>©</sup>
- Lab and pilot scale systems ٠





• Industrial scale systems





#### **Processing Cauldron**

**Carbon Dioxide Storage Tanks** 

Pressurizing and Circulation Pumps

**Chemical Addition and Separation Tanks** 

50HKPC

**Temperature Control Units** 

Loading and Unloading Unit

Safety Components

System Control Unit





### Processing Cauldron

- > Two processing cauldrons allow parallel processing
- > 500 L capacity
- > Process up to **2000 yards** of fabric
- Average daily capacity 30,000 yards
- > Equipped with a fully **automated hydraulic-door** with a double locking system



### Carbon Dioxide Storage Tanks

Two CO<sub>2</sub> storage tanks store up to 12.5 m<sup>3</sup> of CO<sub>2</sub>



Carbon dioxide storage tank (2.5 m<sup>3</sup>)



Carbon dioxide storage tank (10 m<sup>3</sup>)

#### Pressurizing and Circulation Pumps

- Pressurizing pump with operating pressure up to 350 bar
- Circulation pump can deliver a continuous
  flow at a rate up to 50 m<sup>3</sup>/h
  - $\rightarrow$  Integrated with an automated valve



Pressurizing Pump



Circulation Pump



#### Chemical Addition and Separation Tanks

- > External chemical addition tanks for easy addition of dyes/finishing agents
- Separation tank for easy recovery of residual chemicals



Separation Tank



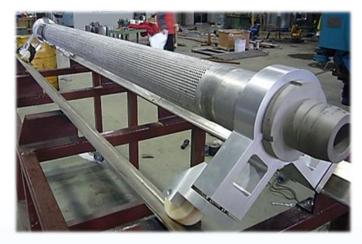
Chemical Addition Tanks

### *Temperature Control Units*

Heaters, chillers and heat exchangers












### Loading and Unloading

Specially designed shaft and trolley for loading and unloading









### Safety Concerns

- For textile finishing manufacturers, process conditions of up to 300 bar are very unusual
- Some mental reservations can possibly arise
  - Handling high pressure is not a problem because the machines are constructed in such a way so as to afford maximum safety levels for the operating staff
  - Withstand up to 350 bar (25% more than the normal operating pressure of 280 bar)



### Safety Components

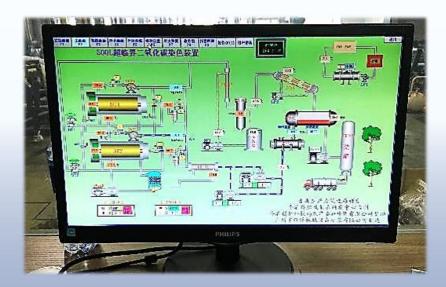
- Safety valves are installed at
  - Processing cauldrons
  - CO<sub>2</sub> storage tank
  - Chemical addition tanks
  - Separation tank
  - Pressurizing pump
  - CO<sub>2</sub> incoming pump
















#### System Control

- > Custom made user friendly software with a process diagram view
  - $\rightarrow$  Monitor and control the system
  - → Production parameters are recorded for reference and quality control
- Separated control room
  - → Remotely monitors and controls the system







### Certification

Inspected and certificated by
 Jiaxing Special Equipment
 Inspection and Testing
 Institute

| 计量认证号<br>2015110883L | 国家检验机构认可<br>检验: CNAS IB0125 | 检验检测机构核准证号<br>TS7110061-2016 |   |
|----------------------|-----------------------------|------------------------------|---|
|                      | 申请编号                        | 号: YA2015-497                |   |
|                      | 报告编号                        | 号: <u>DAF2015-0976</u>       | 1 |
| 压力                   | 」<br>管道安装安<br>监督检验报         |                              |   |
| 工程名称:                | 嘉兴利维科技超临界染色                 | 项目压力管道工程                     | 1 |
| 建设单位:                | 三养纺织(嘉兴)有限公                 | ন                            |   |
| 监督检验单位:              | 嘉兴市特种设备检验核                  | 金测院                          |   |
| 监督检验时间:              | 2015年12月10日 3               | 至 2016年01月20日                |   |
| ŝ                    | 《兴市特种设备检验                   | 检测院                          |   |

### ScCO<sub>2</sub> Dyeing Systems





# eco<sub>2</sub>Dye

1 × 20L

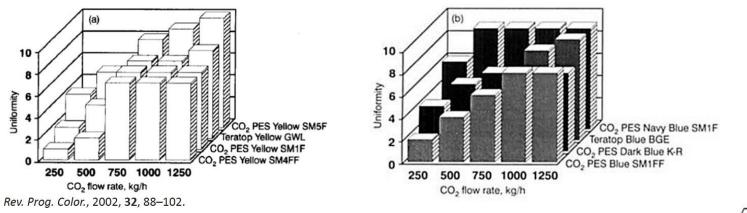


### **Solubility of dyes**

- Low dye solubility  $[10^{-4} \text{ and } 10^{-7} \text{ mol dye/mol CO}_2]$
- Extensive grinding of the pure dyes enhances solubility
  - Increases of the surface area
- Molecular weight
- Dye structure
  - Solubility is decreased by the introduction of highly polar hydroxyethyl (–CH<sub>2</sub>CH<sub>2</sub>OH), amino (–NH<sub>2</sub>), cyano (–CN), acetylamino (–NHCOCH<sub>3</sub>) and carboxy (–COOH) groups
  - Halogen (Cl, Br, I, etc.) and nitro (–NO<sub>2</sub>) groups have a positive effect on the solubility

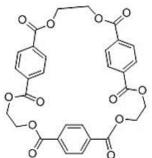
#### Static system vs Dynamic system

- A static dyeing apparatus without CO<sub>2</sub> circulation
  - > Agglomeration, crystallization and melting of dyes  $\rightarrow$  lower solubility
- Takes 2-3 days to obtain dyeing equilibrium without CO<sub>2</sub> circulation


# **Quality of Dyeing**

#### Dye distribution between the fibre and CO<sub>2</sub>

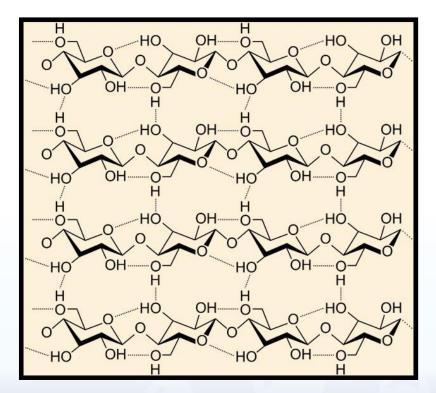
- Dye exhaustion from the solution >> Sorption into the fibre.
  - > Precipitation of the dye on the fibre surface  $\rightarrow$  poor fastness properties


#### CO<sub>2</sub> flow rate

• Highest influence on the levelness



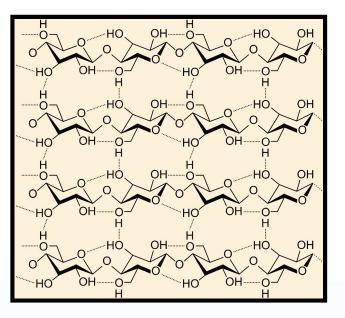
#### Cyclic trimers


- Oligomers, mainly cyclic trimer, diffuse from the inside of the fibre to the surface
  - > Visual problems at dark shades and lower brilliancy of shade



Cotton has a market share of 37%

#### Problem of dyeing cotton in scCO<sub>2</sub>


- Inability to break the highly hydrogenbonded cross-linking structure
  - Hindered the diffusion of dyes into the interior
- Disperse dyes only show slight interactions with cotton fibres
- Reactive dyes which are used in conventional water dyeing are nearly insoluble in scCO<sub>2</sub>





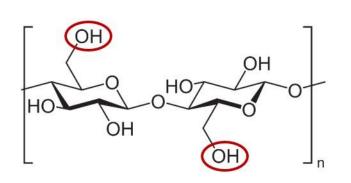
Early attempts with disperse dyes...

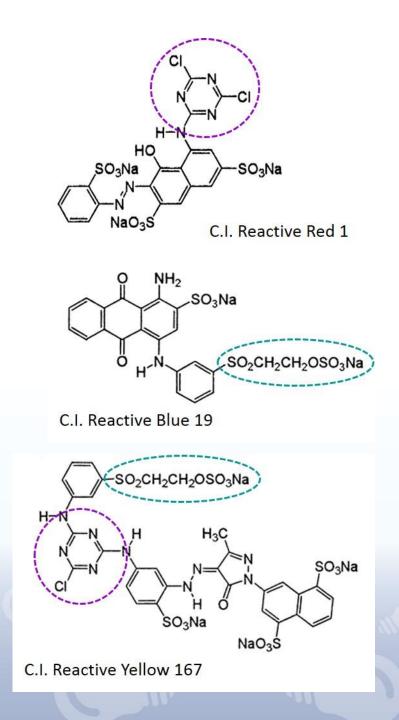
- Impregnation of hydrogen bond-breaking substances
  - Swells the cotton fibre by breaking hydrogen bonds between cellulosic polymer chains
    - $\rightarrow$  increase the accessibility of cellulose to the dyes



- The impregnation and the removal of the hydrogen bond-breaking substances has to be carried out by aqueous processes
- X Low wash fastness properties
  - Colour strength decreases remarkably after washing
  - > Weak interaction between cotton fibre and dyes



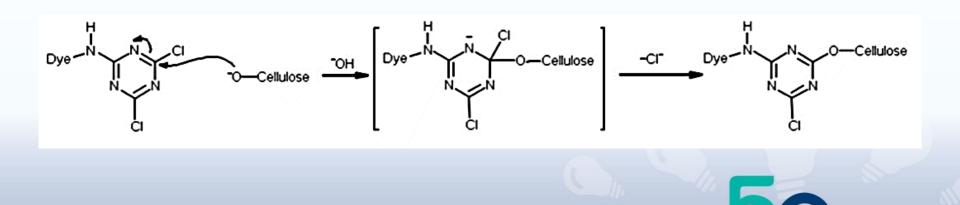

#### Fibre modification


- Introduction of hydrophobic functional groups which can interact with disperse dyes
  - 1) Dicyclohexylcarbodiimide (15-20% owf) in chloroform
  - 2) Benzoylthioglycollate (BTG)
  - 3) Benzoyl chloride (22% owf)
- Pre-treatment and in some cases after-cleaning have to be carried out in water or other solvents
  - Require additional energy-consuming treatment and drying step
- ➤ High concentrations of the modifying agent are needed
  - Significant changes in the fibre properties



### **Reactive Dyes**

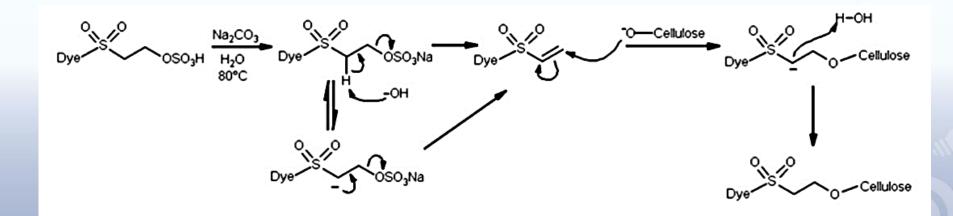
- Soluble in water
- Containing reactive groups like chlorotriazine or vinyl sulphone groups
- Forms covalent bond with the fibre through the reaction with the hydroxyl groups of cellulose
- Polyfunctional dyes to improve fastness and/or fixation degree





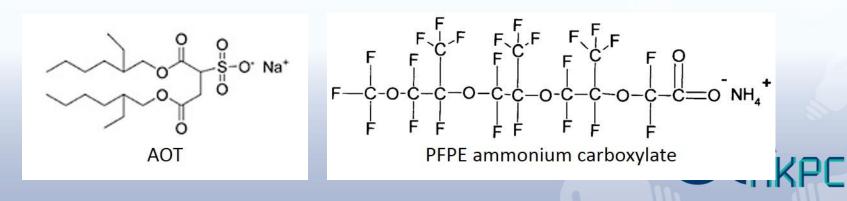

### **Reactive Dyeing Mechanism**

#### Chlorotriazine type reactive dyes

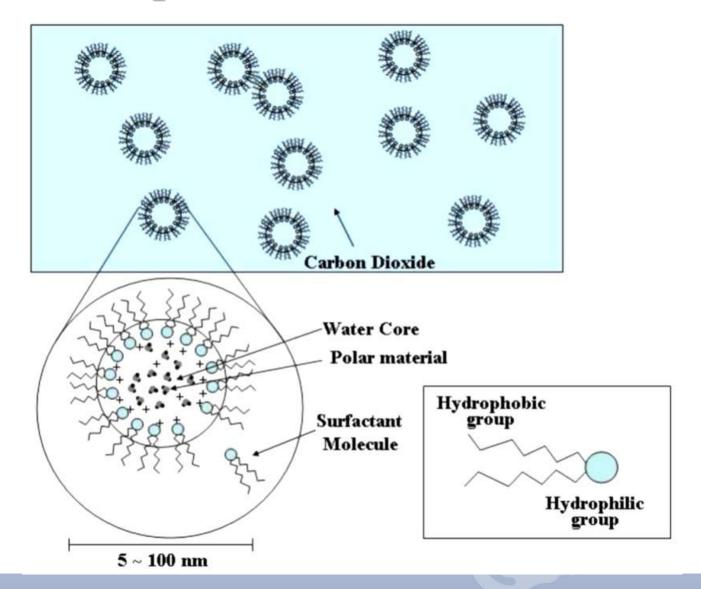

- Nucleophilic substitution (S<sub>N</sub>Ar)
  - 1) Nucleophile (the cellulosate anion) attacks at the carbon atom bearing the leaving group, i.e. chloride, to form a resonance-stabilized intermediate;
  - 2) The substitution reaction is completed by the elimination of the leaving group.



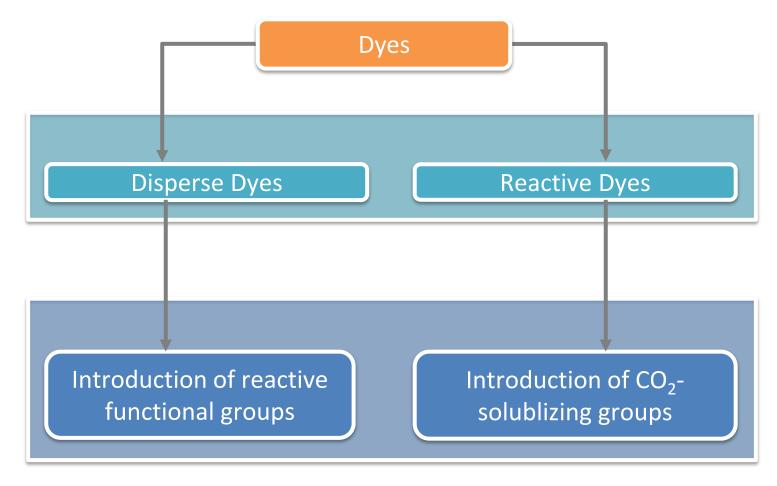
### **Reactive Dyeing Mechanism**


#### Vinyl sulphone type reactive dyes

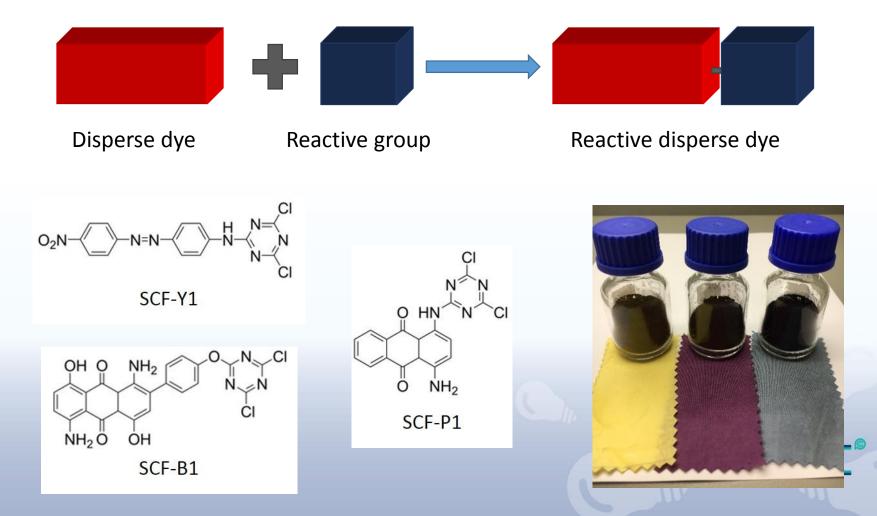
- Nucleophilic addition
  - 1) Sulfatoethylsulphone group converses by an elimination reaction into the highly reactive vinyl sulphone group under alkaline conditions;
  - 2) The cellulosate anion attacks on the vinyl sulphone and leads to the a resonance-stabilized anionic intermediate;
  - 3) The addition reaction is completed by protonation.




#### Use of co-solvents


- Water or alcohols are the most important co-solvents
  - > To increase the polarity and the solvent power of carbon dioxide
- The solvent properties of scCO<sub>2</sub> can be vastly improved by the incorporation of surfactant
  - Surfactants, such as perfluoropolyether (PFPE) based and sodium bisethylhexyl sulfoccinate (AOT), etc., are amphiphilic molecules containing both a CO<sub>2</sub>-phobic and a CO<sub>2</sub>-philic portion




### Water-in-CO<sub>2</sub> Microemulsions



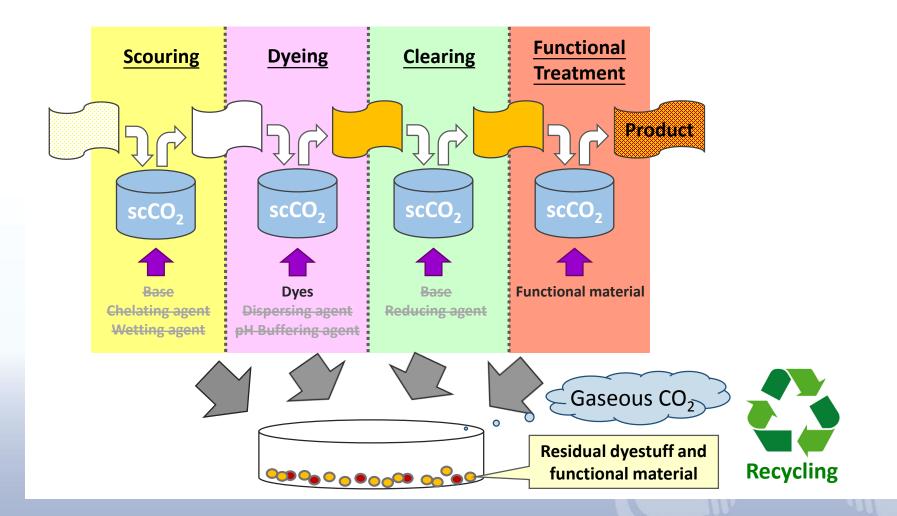
#### Development of CO<sub>2</sub>-soluble dyes for cotton



#### Reactive disperse dyes



|                                 | Fastness |     |  |
|---------------------------------|----------|-----|--|
| Dye                             | Wash     | Rub |  |
| Reactive Disperse Yellow SCF-Y1 | 4–5      | 4–5 |  |
| Reactive Disperse Purple SCF-P1 | 4        | 4–5 |  |
| Reactive Disperse Blue SCF-B1   | 3–4      | 4–5 |  |




| Poortivo group                           | Colourviold  | Fastness |     |       |
|------------------------------------------|--------------|----------|-----|-------|
| Reactive group                           | Colour yield | Wash     | Rub | Light |
| Trichlorotriazine (TCT)                  | Low          | 1,3,5    | 5   | 4     |
| 2-Bromoacrylic acid ester or amide (BAA) | Mid–High     | 4–5      | 5   | 5     |
| Vinyl sulphone                           | Mid–High     | 1–2      | 4–5 | 1–2   |

- Highly corrosive hydrochloric acid from TCT and hydrobromic acid from BAA are released
  - > Damages the fibre as well as the machinery equipment



### **Integration of Functional Treatment Process**



### **Economic Evaluation of scCO<sub>2</sub> Dyeing**

#### I. Capital Costs

|                                            | scCO <sub>2</sub> Dyeing | Aqueous Dyeing |
|--------------------------------------------|--------------------------|----------------|
| Equipment cost (HK\$)                      | 8,500k                   | 2,000k         |
| Annual capital charge (HK\$) <sup>a</sup>  | 1,150k                   | 270K           |
| Labour cost (HK\$/month) <sup>b</sup>      | 8,000                    | 8,000          |
| Batch time (min)                           | 120                      | 210            |
| Production capacity (kg/batch)             | 150                      | 300            |
| Production capacity (kg/year) <sup>c</sup> | 315k                     | 360k           |
| Capital charge (HK\$/kg)                   | 3.96                     | 1.02           |

<sup>a</sup>The annual capital charge is 13.5%; <sup>b</sup>1 operator for each machine; <sup>c</sup>14 hr/day and 25 days/month



### **Economic Evaluation of scCO<sub>2</sub> Dyeing**

#### II. Operational Costs

| Compound/utility                                                                            | scCO <sub>2</sub> |              | Aqueous           |                  |  |
|---------------------------------------------------------------------------------------------|-------------------|--------------|-------------------|------------------|--|
|                                                                                             | Amount/batch      | Price (HK\$) | Amount/batch      | Price (HK\$)     |  |
| Electricity                                                                                 | 60 kWh            | 78           | 100 kWh           | 130              |  |
| Water                                                                                       | 0 m <sup>3</sup>  | 0            | 5 m <sup>3a</sup> | 17.5             |  |
| Wastewater treatment                                                                        | 0 m <sup>3</sup>  | 0            | 5 m <sup>3</sup>  | 12.5             |  |
| Steam                                                                                       | 90 kg             | 18           | 1380 kg           | 276 <sup>b</sup> |  |
| CO <sub>2</sub>                                                                             | 15 kg             | 0.9          | 0 kg              | 0                |  |
| Dyes                                                                                        | 3 kg              | 300          | 6 kg              | 600              |  |
| Dispersing agent                                                                            | 0 kg              | 0            | 6 kg              | 600              |  |
| Other chemicals                                                                             | 0 kg              | 0            | 3 kg              | 150              |  |
| Maintenance <sup>c</sup>                                                                    |                   | 12           |                   | 5                |  |
| Operating cost (HK\$/kg)                                                                    |                   | 2.73         |                   | 5.97             |  |
| <sup>a</sup> For dyeing, washing and rinsing; <sup>b</sup> For dyeing, washing, rinsing and |                   |              |                   |                  |  |

drying; <sup>c</sup>Maintenance is 3% of equipment cost

### **Economic Evaluation of scCO<sub>2</sub> Dyeing**

#### III. Total Processing Costs

|                            | scCO <sub>2</sub> Dyeing | Aqueous Dyeing |
|----------------------------|--------------------------|----------------|
| Capital Costs (HK\$)       | 3.96                     | 1.02           |
| Operational Costs (HK\$)   | 2.73                     | 5.97           |
| Processing Costs (HK\$/kg) | 6.69                     | 6.99           |

- As energy and water/wastewater costs differ very much from country to country, a concrete comparison of the water and scCO<sub>2</sub> dyeing process is not possible in great detail.
- The water cost in Netherlands is much higher (2.27 €/m<sup>3</sup>) and the processing for scCO<sub>2</sub> dyeing is 50% lower comparing water dyeing.



### **Environmental Considerations**

| Compound/        | scCO <sub>2</sub> |                  | Aqueous          |                      | scCO <sub>2</sub>                | Aqueous                          |
|------------------|-------------------|------------------|------------------|----------------------|----------------------------------|----------------------------------|
| utility          | Amount<br>/batch  | Amount<br>/kg    | Amount<br>/batch | Amount<br>/kg        | CO <sub>2</sub> -emission<br>/kg | CO <sub>2</sub> -emission<br>/kg |
| Electricity      | 60 kWh            | 0.4 kWh          | 100 kWh          | 0.33 kWh             | 0.24 kg                          | 0.20 kg                          |
| Water            | 0 m <sup>3</sup>  | 0 m <sup>3</sup> | 5 m <sup>3</sup> | 0.017 m <sup>3</sup> |                                  |                                  |
| Steam            | 90 kg             | 0.6 kg           | 1380 kg          | 4.6 kg               | 0.07 kg                          | 0.54 kg                          |
| CO <sub>2</sub>  | 15 kg             | 0.1 kg           | 0 kg             | 0 kg                 | 0.1 kg                           | 0 kg                             |
| Dyes             | 3 kg              | 0.02 kg          | 6 kg             | 0.02 kg              |                                  |                                  |
| Dispersing agent | 0 kg              | 0 kg             | 6 kg             | 0.02 kg              |                                  |                                  |
| Other chemicals  | 0 kg              | 0 kg             | 3 kg             | 0.01 kg              |                                  |                                  |

- ✓ ScCO<sub>2</sub> dyeing requires less energy with 95% of the CO<sub>2</sub> is recycled and therefore is associated with about 45% lower CO<sub>2</sub>-emission, reduces about 100,000 kg of CO<sub>2</sub>-emission for yearly production of 300,000 kg polyester fabric.
- $\checkmark$  ScCO<sub>2</sub> dyeing requires only dyes and therefore can save 60% of chemicals.



#### Does scCO<sub>2</sub> dyeing have a future in the textile industry?

- Environmental advantages
  - Waterless process  $\rightarrow$  no wastewater discharge
  - Reuse of CO<sub>2</sub>
  - Requires less chemicals and energy
  - Lower CO<sub>2</sub>-emission
- ✓ Fully met all of the quality standards for polyester as in water dyeing
  - High colour yields are obtained
  - High levelness of dyeing, i.e. no colour differences at the inside, middle, and outside of the fabric pack
  - Very good washing, rubbing and sublimation fastness properties





#### Does scCO<sub>2</sub> dyeing have a future in the textile industry?

- ✗ High investment costs of the plant
  - Partly compensated through the lower processing costs
  - Only companies with deep pockets will be able to make such investments
  - The dye industry is typically a very low-margin industry, the price of the dyeing machines must come down
- ➤ ScCO<sub>2</sub> dyeing process now can only be used for polyester, not cotton
  - Several methods have been developed, however...
    - Requires the use of co-solvents or additional chemicals, like surfactant
    - The results were not satisfactory, such as poor fastness properties or deterioration of the fibre properties
  - Much more research based on new concepts and ideas



1HANK You

